Муниципальное бюджетное образовательное учреждение Кильмезская средняя общеобразовательная школа Центр образования естественнонаучной и технологической направленности «Точка роста»

Принята на заседании Педагогического совета Протокол № 7 от «29 » 08 203 %г.

Дополнительная общеобразовательная общеразвивающая программа естественнонаучной направленности «Рго-физика»

Возраст обучающихся: 13-16 лет Срок реализации программы – 1 год Автор-составитель: Салтыков Александр Вячеславович педагог дополнительного образования

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Направленность программы

Дополнительная общеобразовательная общеразвивающая программа «Рго-физика» (далее Программа) относится к естественнонаучной направленности.

Актуальность программы

Содержание Программы является естественнонаучная и интеллектуальнопознавательная деятельность. Она включается в себя такие элементы, как наблюдение, измерение, выдвижение гипотез, построение объясняющих моделей, экспериментирование, математическую обработку данных, анализ информационных источников, а также предполагает использование коммуникативных умений.

В настоящее время в работе со школьниками на первое место выходит самостоятельная деятельность учащихся, применение ими исследовательских методов, развитие навыков структурирования этапов выполнения задания, проектная деятельность, повышение интереса к экспериментированию. Эти же подходы могут быть нацелены и на обучение решению олимпиадных задач.

Педагогическая целесообразность Программы заключается в том, что она способствует совершенствованию умения пользоваться современным инструментарием и практически применять результаты решения проблемы, а также ознакомиться методами работы на начальном этапе исследовательской деятельности.

Воспитание творческой активности учащихся в процессе изучения ими физики является одной из актуальных задач, стоящих перед учителями физики в современной школе. Основными средствами такого воспитания и развития способностей учащихся являются экспериментальные исследования и задачи. Умением решать задачи характеризуется в первую очередь состояние подготовки учащихся, глубина усвоения учебного материала. Решение нестандартных задач и проведение занимательных экспериментальных заданий способствует пробуждению и развитию у них устойчивого интереса к физике.

Отличительные особенности

Отличительные особенности Программы от уже существующих в этой области заключаются в том, что она обеспечивает условия для развития познавательных и творческих способностей учащихся при сохранении фундаментальности физического образования и усиления его практической направленности.

рассматривает учебный физический эксперимент, Программа физические исследования, как теоретические, так и в виде практических заданий, которые играют огромную роль в освоении учащимися научного метода познания. В условиях современной школы недостаточно просто давать знания и показывать опыты, необходимо вовлекать в процесс самих учащихся, тем самым, обучая их навыкам исследовательской деятельности, которая позволяет привлечь учащихся к работе с первоисточниками, проведению экспериментов и трактовке его результатов. В ходе реализации Программы учащиеся знакомятся с научным методом познания, который история науки связывает с именем Г. Галилея. Это метод включает в себя следующие этапы: чувственный опыт и постановку проблемы; выдвижение гипотезы – аксиомы; математическое развитие гипотезы, логический вывод из нее следствий; экспериментальную проверку гипотезы и ее следствий.

Получая представление о методе познания и методах исследования явлений, учащиеся знакомятся, во-первых, с происхождением научных знаний и их отличиями от обычной информации, во-вторых, — с необходимой последовательностью познавательных действий, ведущих от незнания к знанию. Это позволяет учителю организовывать их самостоятельную познавательную деятельность в форме самостоятельных экспериментальных и теоретических исследований, которые органически вписываются в логику процесса познания, являются его этапами, ведут ученика к знанию.

Направление воспитательной работы - интеллектуальное воспитание, самоопределение и профессиональная ориентация, формирование и развитие информационной культуры и информационной грамотности.

Адресат программы

Программа предназначена для учащихся 15-17 лет. Данному возрасту характерно необходимость самореализации и самоопределения. Объединение предназначено для учащихся, заинтересованных в углубленном изучении физики, через экспериментальную деятельность с использованием информационных технологий. Занятия объединения дополнительного образования способствуют развитию и поддержке интереса учащихся к деятельности определенного направления, дает возможность расширить и углубить знания и умения, полученные в процессе учебы, и создает условия для всестороннего развития личности. Занятия являются источником мотивации учебной деятельности учащихся, дают им глубокий эмоциональный заряд. Воспитание творческой активности учащихся в процессе изучения ими физики является одной из актуальных задач, стоящих

перед учителями физики в современной школе. Основными средствами такого воспитания и развития способностей учащихся являются экспериментальные исследования и качественные задачи. Решение качественных задач и проведение занимательных экспериментальных заданий способствует пробуждению и развитию у них устойчивого интереса к физике.

Объем, сроки реализации и режим занятий

Объем программы – 216 часов

Сроки реализации – 2 года.

Режим занятий – 2 раза в неделю продолжительностью 1 и 2 часа.

Цель: формирование целостного представления о мире, основанного на приобретенных знаниях, умениях, навыках и способах практической деятельности для осознанного выбора профессиональной ориентации.

Задачи:

- способствовать самореализации учащихся в изучении конкретных тем физики, развивать и поддерживать познавательный интерес к изучению физики как науки, знакомить учащихся с последними достижениями науки и техники, научить решать задачи нестандартными методами, развитие познавательных интересов при выполнении экспериментальных исследований с использованием информационных технологий;
- воспитание убежденности в возможности познания законов природы, в необходимости разумного использования достижений науки и техники, воспитание уважения к творцам науки и техники, отношения к физике как к элементу общечеловеческой культуры.
- развитие умений и навыков учащихся самостоятельно работать с научно-популярной литературой, умений практически применять физические знания в жизни, развитие творческих способностей, формирование у учащихся активности и самостоятельности, инициативы. Повышение культуры общения и поведения.

Форма организации образовательного процесса и виды занятий

Процесс обучения по программе – это работа с группами подростков в школе - форма занятий – беседа, практикум, экскурсия, игра, проектная работа, исследовательская деятельность.

Например, над некоторыми задачами учащимся будет удобней работать индивидуально или в парах, а публичная презентация результатов (конференция) может быть заменена отчетом группы непосредственно перед педагогом. Одной из наиболее рациональных форм организации исследовательской деятельности является работа учащихся в парах или тройках, используя ролево-игровую методику, когда учащиеся могут дополнять друг друга, исполняя ту или иную роль: теоретик, практик, физик, биолог, и т.д. В этом случае качество работы, уровень подготовки и результативность резко повышаются, так как учащиеся неоднократно обсуждают свою тему, советуются, спорят, взаимно проверяют выученный материал, используют ошибки и недочеты. Поскольку программа состоит исключительно из исследовательских задач, то в ней практически отсутствует лекционная форма занятий. Ее аналогом лишь в какой-то мере можно считать информационно-инструктивную часть, в ходе которой учитель в сжатой форме представляют необходимые сведения об изучаемом явлении, вместе с учениками формирует задачу, дает информационные ссылки, которые могут понадобиться ученикам в процессе работы над ней.

Уровень освоения программы

УЧЕБНЫЙ ПЛАН (1 год обучения)

No	Название раздела, темы	Ко	личество	часов	Формы	Формы
	•	Всего	Теория	Практика	организации занятий	контроля
1.	Вводное занятие: инструктаж по ТБ	1	1		Лекция	
2.	Рассказы о физиках.	2	2		Лекция	
3	Электрические явления.	9	1	8	лекция, работа с измерительными	Эксперимент
4	Решение олимпиадных задач по физике	9	1	8	Решение задач	Олимпиада
5	Механика. Лабораторный практикум.	4	1	3	Лекция, опыты	Практикум
6	Исследование явления электромагнитной индукции.	5	1	4	Лекция, опыты	Наблюдение
7	Решение экспериментальных и качественных задач	6	1	5	Решение задач	Практикум
8	Электродинамика. Лабораторный практикум.	6	1	5	Лекция, опыты	Практикум
9	Тестовые задания по физике.	6	1	5	Лекция, работа с сайтами	Практическая работа
10	Промежуточный контроль	3		3	Семинарское занятие	Практикум
11	Оптика. Тематические опыты по оптике.	5	1	4	Лекция, опыты	Тематические опыты
12	Создание электронной презентации к уроку физики	4	1	3	Лекция, работа с сайтами	Практическая работа
13	Динамика. Лабораторный практикум.	3	1	2	Лекция, опыты	Практикум
14	Звуковые волны. Лабораторный практикум по теме «Колебания и волны»	6	1	5	Лекция, опыты	Практикум
15	Подготовка и проведение недели физики в рамках предметного месячника в школе	12	2	10	Лекция, практикум	
16	Средства современной связи.	3	1	2	Лекция, практикум	
17	Строение солнечной системы.	3	1	2	лекция	Практикум
18	Тепловые явления. Лабораторный практикум.	6	1	5	Лекция, практикум	•
19	Проектная работа. Оформление проекта	8	1	7	Лекция, подготовка проекта	
20	Защита проекта. Выставка работ.	4		4		Защита проекта
21	Итоговый контроль	3		3		Круглый стол по подведению
	Общее количество	108	19	89		ИТОГОВ
L	S SINGS ROUTH 1001BO	100	1/	07	1	

СОДЕРЖАНИЕ ПРОГРАММЫ

(1 год обучения)

Тема 1. Вводное занятие. Инструктаж по охране труда на занятиях кружка.

Теория: Вводное занятие. Инструктаж по охране труда на занятиях кружка

Практика: Планирование работы объединения ДО, выборы старосты.

- 2. Рассказы о физиках. Нобелевские лауреаты по физике. Жизнь и научная работа. *Теория:* Рассказы о физиках. Нобелевские лауреаты по физике. Жизнь и научная работа.
- 3. *Теория*: Электрические явления. Законы Ома. Параллельное и последовательное соединения проводников. Электроизмерительные приборы: устройство и принцип действия. *Практика*: Сборка электрических цепей, работа с измерительными приборами. Исследование электрических цепей.
- 4. *Теория:* Решение олимпиадных задач по физике. Всероссийская олимпиада по физике. Соросовская олимпиада по физике. Экспериментальный тур олимпиады по физике. *Практика:* Решение задач
- 5. Теория: Интересные явления в природе.

Практика: Занимательные опыты.

6. *Теория:* Исследование явления электромагнитной индукции. Из истории открытия явления электромагнитной индукции. Закон электромагнитной индукции.

Практика: Опыты.

7. Теория: Решение экспериментальных и качественных задач

Практика: Решение задач

8. Теория: Подготовка магических фокусов, основанных на физических закономерностях.

Практика: Магические фокусы

9. Теория: Тестовые задания по физике. Составление тестов по физике. Работа с конструктором сайтов.

Практика: Создание электронных тестов в помощь кабинету физики.

10. Промежуточный контроль.

Практика: Практикум, семинарское занятие

11. *Теория:* Оптика. Занимательные опыты по физике. Оптические явления. Прямолинейное распространение света. Скорость света в вакууме. Законы отражения и преломления.

Практика: Занимательные опыты.

12. Теория: Создание электронной презентации к уроку физики

Практика: Практическая работа по теме

13. Теория: Физика стирки. Что такое поверхностное натяжение

Практика: Практикум по решению задач

14. *Теория:* Звуковые волны. Скорость и длина волны. Громкость и высота звука. Распространение звука в разных средах. Эхо.

Практика: Занимательные опыты со звуком.

15. Теория: Подготовка и проведение недели физики. Разработка плана недели физики. Подготовка мероприятий.

Практика: Техническое оснащение массовых мероприятий в раках недели физики. Анализ проведения недели физики.

16. Теория: Средства современной связи. Развитие средств связи.

Практика: Опыты.

17. *Теория:* Строение солнечной системы. Карта звездного неба. Способы определения небесных координат. Вид звездного неба.

Практика: Наблюдение за звездным небом.

- 18. Практика: Изготовление самодельных приборов и ремонт существующего оборудования кабинета физики.
- 19. Практика: Проектная работа. Изготовление действующей модели.
- 21. Практика: Защита проекта. Выставка работ.

22. Практика: Итоговый контроль - Круглый стол по подведению итогов работы объединения в течение учебного года

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

По окончанию первого года обучения учащиеся должны:

знать:

- Технику безопасности при проведении физического эксперимента;
- Основы простейшего эксперимента;
- Основные методы исследовательской работы;

уметь:

- Самостоятельно проводить собственное наблюдение за физическими процессами, сопровождая его фиксированием полученной информации;
 - Самостоятельно составить план наблюдения при физическом эксперименте;
 - Самостоятельно анализировать результаты наблюдения за физическими явлениями;
 - Работать с литературой.

приобретут:

- Навыки к выполнению работ исследовательского характера;
- Навыки решения разных типов задач;
- Навыки постановки эксперимента;
- Навыки работы с дополнительными источниками информации, в том числе электронными, а также умениями пользоваться ресурсами Интернет;

УЧЕБНЫЙ ПЛАН (2 год обучения)

3.0	(2 год обучения)					
№	Название раздела, темы		оличество		Формы	Формы
		Всего	Теория	Практика	организации	аттестации
					занятий	(контроля)
1.	Введение: инструктажи по ТБ	1	1	-	Лекция	
2.	Цели и задачи научно-	1	1		Лекция	
	исследовательской деятельности					
	учащихся					
3	Физический эксперимент как	3	1	2	Лекция,	Эксперимент
	часть научного познания				исследование	
	природы, его роль в развитии					
	науки.					
4	Проверочный эксперимент	4	1	3		Эксперимент
5	Наблюдение физических	6	1	5	Лекция,	
	явлений. Методика наблюдений				практикум	
6	Гипотеза. Роль и место научных	3	1	2	Лекция,	
	гипотез в создании научной				практикум	
	теории.					
7	Построение моделей в процессе	2	2		Лекция	
	познания.					
8	Фундаментальные физические	6	1	5	Лекция,	Эксперимент
	эксперименты.				практикум	
9	Физический практикум.	10		10		Опыты
10	Занимательные опыты по	9		9	Лекция, опыты	Опыты
	физике.				·	
11	Предпроектная и проектная	6	1	5	Лекция,	Проект
	деятельность учащихся.				практикум	•
12	Исследования по теме "Все о	6	1	5	Лекция,	
	воде".				исследование	
13	Защита и обсуждении	3		3		Защита
	результатов исследования					•
14	Физика: путь поисков и	1	1		Лекция	
					,	
	открытий				ртокции	

24	Сделай и исследуй сам.	3		3	iipukiiikyiii	Лабораторная работа
23	Законы физики и законы технологии	4	1	3	Лекция, практикум	
	технологических систем и применение физических эффектов.				,	
22	творчества Закономерности	2	2		практикум Лекция	
21	Методы технического	6	2	4	Лекция,	Опыты
20	Изобретатель: профессия или призвание?	3	1	2	Лекция	
19	Защита проектных работ	4		4		Защита
18	Защита и обсуждение результатов исследования	3		3		Защита
17	Исследования по теме "Физика и техника"	6	1	5	Лекция, исследование	
16	Защита и обсуждение результатов исследования	3		3		Защита
15	Исследования по теме "Физика вокруг нас"	7	1	6	Лекция, исследование	

СОДЕРЖАНИЕ ПРОГРАММЫ

(2 год обучения)

1. *Теория:* Введение. Техника безопасности на занятиях объединения. Организационные вопросы.

Практика: -

2. *Теория:* Цели и задачи научно – исследовательской деятельности учащихся Представить программу всего курса, показать перспективы деятельности учащихся. *Практика:* Познакомить с требованиями к оформлению научно – исследовательской работы.

3. *Теория*: Физический эксперимент как часть научного познания природы, его роль в развитии науки.

Практика: Опыты "Проверка правил моментов на рычаге".

4. *Теория:* Проверочный эксперимент. Его роль и место в процессе познания. Необходимость физического эксперимента в науке. Мир физических явлений, представленных природой или вызванных физическим экспериментом. (На примере закона Ома).

Практика: Физический эксперимент

5. *Теория:* Наблюдение физических явлений.

Практика: Выполнение самостоятельных наблюдений в группах.

Опыты "Проверка правил моментов на рычаге".

Оборудование: микролаборатория "Механика".

Наблюдение и составление анализа физических явлений. Связь данного явления с ранее изученными. Введение физических величин, характеризующих явление.

Пример наблюдений – явление отражения света. Составить план проведения наблюдений (что наблюдать, от чего зависит и какая величина, как зависит и др.)

Оборудование: микролаборатория "Оптика"

Составить план наблюдения, провести описание результатов наблюдений.

Пример наблюдений – явление электромагнитной индукции.

Оборудование: микролаборатория "Электродинамика".

Дома: повторить, что известно о магнитном и электрическом полях, об электрических зарядах, строении вещества.

6. Теория: Гипотеза, роль и место гипотезы в процессе познания.

Практика: Опыты по электродинамике. Оборудование: микролаборатории "Электродинамика".

Теория: Построение моделей в процессе познания.

Практика: Построение моделей в процессе познания. Модель идеального газа. Модель строения Солнечной системы. Модель строения атома и др.

Оборудование: используются видеофильмы или компьютерные модели.

Таблица "Агрегатные состояния вещества", "Строение атома", Плакат "Строение Солнечной системы" Семинар.

Теория: Фундаментальные физические эксперименты

Практика: Практикум «Из истории физики» Оборудование: используются портреты ученых, сведения из учебников физики, "Хрестоматия по физики", "Из истории физики и жизни ее творцов". Оборудование: Мультимедийный проектор, системный блок, экран.

Теория: Физика практикум. Лабораторная работа "Исследование зависимости средней 9. скорости движения тела по наклонной плоскости от угла ее наклона".

Практика: Измерение промежутков времени метрономом, электронными часами/

Практикум "Определение средней квадратичной скорости молекул". Лабораторная работа "Наблюдение процесса роста кристаллов из раствора". Лабораторный эксперимент с творческим заданием. Опыты "Определение удельного сопротивления материала школьного реостат (без разматывания)". Оборудование: микролаборатория "Механика",

микролаборатория "Электродинамика", микролаборатория "Термодинамика".

10. Теория: Занимательные опыты по физике. Конкурс экспериментов.

Практика: Демонстрации опытов учителем, учащиеся объясняют полученный результат.

Предпроектная и проектная деятельность учащихся. Отработка последовательных этапов содержания проекта.

Оборудование: мультимедийный проектор, системный блок, экран.

В ходе занятия учащиеся демонстрируют заранее подготовленные занимательные физические опыты. Оборудование к конкурсу определяется его участниками.

Теория: Предпроектная и проектная деятельность учащихся.

Практикум ПО составлению Практика: проектов, исследований. Оборудование: мультимедийный проектор, системный блок, экран. Обработка последовательных этапов содержания проекта. Семинарские занятия. Оборудование: для подготовки занятий используется книга "Обучение для будущего".

12. Теория: Исследования по теме "Все о воде".

Практика: Введение в тему "Все о воде". Исследование.

13. Теория: Защита и обсуждение результатов исследования.

Практика: Научно-практическая конференция.

14. Теория: Физика: Путь поисков и открытий.

Практика: Подготовка материалов к конференции

Теория: Исследования по теме "Физика вокруг нас". **15.**

Практика: Научно-исследовательская деятельность. Введение в тему «Физика вокруг нас».

16. Теория: Защита и обсуждение результатов исследования.

Практика: Школьная научно-практическая конференция.

17. Теория: Исследования по теме "Физика и техника".

Практика: подготовка материалов по теме «Физика и техника".

18. Теория: Защита и обсуждение результатов исследования.

Практика: Школьная научно-практическая конференция.

19. Теория: Изобретатель: профессия или призвание?

Практика: подготовка материалов по теме

20. Теория: Методы технического творчества.

Практика: Практикум

Закономерности технологических систем и применение физических 21. Теория: эффектов.

Практика: Опыты

22. Теория: Законы физики и законы технологии. Практика: опыты, практикум

23. Теория: Сделай и исследуй сам.

Практика: Практикум

24. Теория: Защита и обсуждение результатов проектных работ.

Практика: Конференция.

25. Практика: Итоговый контроль.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

По окончанию второго года обучения учащиеся должны:

- знать: Технику безопасности при проведении физического эксперимента;
- Основы простейшего эксперимента;
- Основные методы исследовательской работы;

уметь:

- Самостоятельно проводить собственное наблюдение за физическими процессами, сопровождая его фиксированием полученной информации;
 - Самостоятельно составить план наблюдения при физическом эксперименте;
 - Самостоятельно анализировать результаты наблюдения за физическими явлениями;
 - Работать с литературой.

приобретут:

- Навыки к выполнению работ исследовательского характера;
- Навыки решения разных типов задач;
- Навыки постановки эксперимента;
- Навыки работы с дополнительными источниками информации, в том числе электронными, а также умениями пользоваться ресурсами Интернет;
 - Профессиональное самоопределение.

РАБОЧАЯ ПРОГРАММА ВОСПИТАНИЯ

Объединение «Рго-физика» имеет естественнонаучную направленность. Занятия направлены на формирование научного мировоззрения, освоение методов научного познания мира, развитие исследовательских, прикладных способностей обучающихся, с наклонностями в области точных наук и технического творчества. Дифференциация обучения физике, позволяет с одной стороны, обеспечить базовую подготовку, с другой – удовлетворить потребности каждого, кто проявляет интерес и способности к предмету. Дети выбирают то, что отвечает их потребностям, удовлетворяет интересы. И в этом смысл дополнительного образования: оно помогает раннему самоопределению.

Воспитательная цель: воспитание убежденности в возможности познания законов природы, в необходимости разумного использования достижений науки и техники.

Воспитательные задачи:

- воспитание уважения к творцам науки и техники, отношения к физике как к элементу общечеловеческой культуры. учить делать выбор с опорой на ценностную шкалу, включающую в себя такие основополагающие общечеловеческие ценности, как ответственность, свобода, выбор;
- формировать основы научного мировоззрения;
- воспитывать уважение к окружающим: педагогу, участникам объединения ДО, сверстникам;
- воспитывать умение отстаивать свою позицию, принимать и уважать точку зрения другого человека.

Результат воспитательной работы:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- самостоятельность в приобретении новых знаний и практических умений;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

Календарный план воспитательной работы

No	Мероприятия	Задачи	Сроки	Примечание
Π/Π	1 1		проведения	1
1	Урок науки и технологий	Воспитание	сентябрь.	
		целеустремленности,		
		ответственности за		
		результаты своей		
		деятельности.		
		Воспитание чувства		
		патриотизма к своей		
		стране, гордости и		
		уважения к людям,		
		посвятившим свою жизнь		
		развитию наук и технологий		
2	Vuodena p. Heapanauuu		По графии	
2	Участие в проведении Дня открытых дверей	Привлечение внимания учащихся и	По графику	
	дня открытых двереи	их родителей (законных		
		представителей) к		
		деятельности		
		объединений Центра		
		«Точки роста» при МБОУ		
		Кильмезской СОШ		
3	Участие во	Воспитание	Сентябрь -	
	Всероссийской	целеустремленности,	январь	
	олимпиаде школьников	ответственности за	•	
	(школьный,	результаты своей		
	муниципальный и	деятельности.		
	региональный этапы)			
4	Участие во	Воспитание чувства	11.10	
	Всероссийском уроке	гордости и уважения к		
	«Экология и	истории и достижениям		
	энергосбережение» в	отечественной		
	рамках Всероссийского	физической науки,		
	фестиваля	физически грамотное		
	энергосбережения	поведение в		
	#ВместеЯрче	профессиональной деятельности и быту при		
		обращении с приборами и		
		устройствами; воспитание		
		культуры		
		электропотребления,		
		формирование		
		положительного		
		отношения к проблеме		
		экономии энергозатрат и		
		экологии		
5	Участие в Декаде	Воспитание чувства	Ноябрь	
	математики,	гордости и уважения к	_	
	информатики, физики (по	истории и достижениям		
	особому плану)	отечественной		
		физической науки,		
		физически грамотное		

			<u> </u>	1
		поведение в		
		профессиональной		
		деятельности и быту при		
		обращении с приборами и		
		устройствами		
6	Оформление	Воспитание чувства	Ноябрь	
	тематических	гордости и уважения к		
	информационных	истории и достижениям		
	интерактивных стендов	отечественной		
	«Наука и жизнь» –	физической науки		
	«Физика и жизнь»,			
	«Лауреаты Нобелевской		Декабрь	
	премии по физике, химии,			
	медицине»			
7	Интеллектуальная игра	Воспитание	22.11	
	«МИФ»	целеустремленности,		
		ответственности за		
		результаты своей		
		деятельности.		
8	Научный квест ко Дню	Воспитание	08.02	
	российской науки	целеустремленности,		
		ответственности за		
		результаты своей		
		деятельности.		
9	Участие в мероприятиях,	Воспитание чувства	Апрель	
	посвященных Дню	патриотизма к своей		
	космонавтики	стране, гордости и		
		уважения к людям,		
		посвятившим свою жизнь		
		покорению космоса.		
10	Индивидуальные и	Установление контакта,	В течение	
	групповые встречи с	общей благоприятной	учебного года	
	родителями.	атмосферы общения с		
		родителями		
		обучающихся;		
		Формирование активной		
		педагогической позиции		
		родителей, повышение их		
		воспитательного		
		потенциала;		
		Предупреждение		
		наиболее		
		распространенных		
		ошибок родителей в		
1		воспитании детей		

КАЛЕНДАРНЫЙ УЧЕБНЫЙ ГРАФИК

	год обучения: с 2 сентября 2024 года:		
Учебный год	Недели обучения	Количество недель	Количество часов
Сентябрь	02.0907.09.2024	1	3
Сентябрь	09.0914.09.2024	2	3
Сентябрь	16.0921.09.2024	3	3
Сентябрь	23.0928.09.2024	4	3
Сентябрь-Октябрь	30.09-05.10.2024	5	3
Октябрь	07.1012.10.2024	6	3
Октябрь	14.1019.10.2024	7	3
Октябрь	21.1026.10.2024	8	3
Октябрь-ноябрь	28.1002.11.2024	9	3
Ноябрь	04.1109.11.2024	10	3
Ноябрь	11.1116.11.2024	11	3
Ноябрь	18.1123.12.2024	12	3
Ноябрь	25.1130.11.2024	13	3
Декабрь	02.1207.12.2024	14	3
Декабрь	09.1214.09.2024	15	3
Декабрь	16.1221.12.2024	16	3
Декабрь	23.1228.12.2024	17	3
Январь	09.0111.01.2025	18	3
Январь	13.0118.01.2025	19	3
Январь	20.0125.01.2025	20	3
Январь-февраль	27.0101.02.2025	21	3
Февраль	03.0208.02.2025	22	3
Февраль	10.0215.02.2025	23	3
Февраль	17.0222.02.2025	24	3
Февраль-март	25.0201.03.2025	25	3
Март	03.0207.03.2025	26	3
Март	10.0315.03.2025	27	3
Март	17.0322.03.2025	28	3
Март	24.0329.03.2025	29	3
Март - Апрель	31.0305.04.2025	30	3
Апрель	07.0412.04.2025	31	3
Апрель	14.0419.04.2025	32	3
Апрель	21.0426.04.2025	33	3
Апрель-май	28.0403.05.2025	34	3

Май	05.0510.05.2025	35	3
Май	19.0524.05.2025	36	3
Итого:		36	108

2 rc	од обучения: с 2 сентября 2024 года по 31 м	ая 2025 года	
Учебный год	Недели обучения	Количество недель	Количество часов
Сентябрь	02.0907.09.2024	1	3
Сентябрь	09.0914.09.2024	2	3
Сентябрь	16.0921.09.2024	3	3
Сентябрь	23.0928.09.2024	4	3
Сентябрь-Октябрь	30.09-05.10.2024	5	3
Октябрь	07.1012.10.2024	6	3
Октябрь	14.1019.10.2024	7	3
Октябрь	21.1026.10.2024	8	3
Октябрь-ноябрь	28.1002.11.2024	9	3
Ноябрь	04.1109.11.2024	10	3
Ноябрь	11.1116.11.2024	11	3
Ноябрь	18.1123.12.2024	12	3
Ноябрь	25.1130.11.2024	13	3
Декабрь	02.1207.12.2024	14	3
Декабрь	09.1214.09.2024	15	3
Декабрь	16.1221.12.2024	16	3
Декабрь	23.1228.12.2024	17	3
Январь	09.0111.01.2025	18	3
Январь	13.0118.01.2025	19	3
Январь	20.0125.01.2025	20	3
Январь-февраль	27.0101.02.2025	21	3
Февраль	03.0208.02.2025	22	3
Февраль	10.0215.02.2025	23	3
Февраль	17.0222.02.2025	24	3
Февраль-март	25.0201.03.2025	25	3
Март	03.0207.03.2025	26	3
Март	10.0315.03.2025	27	3
Март	17.0322.03.2025	28	3
Март	24.0329.03.2025	29	3

Март - Апрель	31.0305.04.2025	30	3
Апрель	07.0412.04.2025	31	3
Апрель	14.0419.04.2025	32	3
Апрель	21.0426.04.2025	33	3
Апрель-май	28.0403.05.2025	34	3
Май	05.0510.05.2025	35	3
Май	19.0524.05.2025	36	3
Итого:		36	108

УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

В процессе реализации Программы используется материально-техническая база кабинета физики и класса информационных технологий МБОУ Кильмеская СОШ. В ходе проведения занятий используется:

- материал школьной медиатеки;
- лабораторное оборудование;
- компьютер (ноутбук);
- мультимедийный проектор;
- флеш-накопители;
- сеть Интернет.

ФОРМЫ АТТЕСТАЦИИ/КОНТРОЛЯ

Способы оценивания уровня достижений учащихся.

- Входная диагностика сентябрь, с целью выявления первоначальных знаний и умений
- Промежуточный контроль январь,

Формы подведения итогов.

- Практикум
- Семинар
- Круглый стол
- Защита проектов
- Наблюдения
- Эксперимент
- Практические работы

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

Оценочный материал представлен в Приложении к программе.

МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

Освоение дополнительной общеобразовательной программы происходит через сочетание

нескольких форм проведения занятий. Это соревнования и игры (турниры, деловая игра). Это занятия, основанные на формах, и методах работы, известных в общественной практике (исследование, изобретательство, мозговая атака). Проходят занятия в форме, напоминающие публичные формы общения (брифинг, регламентированная дискуссия, устный журнал, диспут), занятия, основанные на имитации деятельности при проведении общественно-культурных мероприятий (заочная экскурсия, путешествие в прошлое), а также трансформация традиционных способов организации урока (урок-консультация, урокпрактикум). Кроме того, учащимся предоставляется возможность самостоятельно применить физические знания на практике (модели-самоделки).

При решении задач обратить внимание на отыскание наиболее рациональных способов решения. Выбор способа решения — право учащегося. Оформление решения задач в соответствии с общепринятыми нормами. Выбор единиц измерения в соответствии с условием задачи, если в условии не оговаривается отдельно — то в СИ. Умение хорошо изложить решение надо поощрять, но умение хорошо и быстро догадываться, должно пениться выше.

В основу разработки программы объединения заложены следующие

технологии: личностно-ориентированная технология и системно-деятельностный подход. Современный процесс обучения должен осуществляться по следующей схеме:

деятельности на занятии ДО; выбор ими источников информации; освоение и присвоение новых знаний в процессе самостоятельной деятельности с этими источниками; самоанализ школьниками результатов работы. Помимо развития творческих способностей, немаловажной задачей является создание полноценных условий для сохранения здоровья детей, формирование интереса к занятиям, с использованием здоровьесберегающих технологий. Необходимо внедрить эти технологии в ежедневный образовательный процесс для улучшения здоровья психики ребенка и комфортного состояния в образовательном процессе. Наличие на занятиях дополнительного образования информационно-коммуникационных технологий делают процесс обучения более интересным, отвечающим

реалиям сегодняшнего дня. Использование информационных технологий позволяет повысить уровень мотивации учащихся и эффективность занятий, формирует культуру познавательной деятельности. Метод интеграции на занятиях способствует формированию целостной картины мира у детей, пониманию связей между явлениями в природе, обществе и мире. В программе сочетаются индивидуальные занятия. В практической части программы индивидуальные занятия позволяют наиболее полно выявить склонности и предпочтения учащегося, его способности и познавательные возможности, но наряду с индивидуальной работой с детьми необходима и полезна работа в группах и в микрогруппах, где ребята учатся друг у друга, мотивируют к деятельности, создают здоровый элемент соревновательности. В таких условиях ребята могут реализовать в полной мере свои возможности, задатки, способности, использовать весь комплекс знаний, умений, навыков, полученных на других предметах естественно-научного цикла.

СПИСОК ЛИТЕРАТУРЫ

- 1. Журнал «Физика в школе»
- 2. Приложение к газете «Первое сентября» «Физика»
- 3. К.Н.Павленко «Тестовые задания по физике» (7 класс, 8 класс, 9 класс, 10 класс, 11 класс), М, «Школьная пресса», 2021
- 4. Г.Н.Никифоров «Готовимся к ЕГЭ по физике. Экспериментальные задания», М, «Школьная пресса», 2019
- 5. Я.И Перельман «Занимательная физика», Чебоксары, 2020
- 6. Я.И Перельман «Занимательная механика. Знаете ли вы физику?», М, АСТ, 2020
- 7. И.С.Шутов «Физика. Решение практических задач», Минск, Современное слово, 2019
- 8. И.Я Ланина «Развитие интереса к физике», М, Просвещение, 2018
- 9. М.Алексеева «Физика юным», М. Просвещение, 2020

ИНТЕРНЕТ-РЕСУРСЫ

- https://ru.wikipedia.org/wiki/%D0%98%D1%81%D1%82%D0%BE%D1%80%D0%B8
 %D1%8F_%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B8
 История физики
- 2.
 https://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D0%B5
- 3. https://pnu.edu.ru/ru/faculties/full_time/fkfn/physics/study/literature/experiments/ 10 самых красивых экспериментов из истории физики
- 4. https://simplescience.ru/collection/physics занимательные видео-опыты
- 5. https://www.labirint-um.ru/blog/zanimatel_nye_zadachi/pouchitel_nye_i_veselye_opyty_dlya_detej/ поучительные и веселые опыты для детей.
- 6. https://www.youtube.com/watch?v=BtqxmcdkT8A занимательная физика, опыты с водой

Контрольно-измерительные материалы Первый год обучения

Лабораторные, практические и исследовательские работы

- 1. «Электроизмерительные приборы: устройство и принцип действия. Сборка электрических цепей, работа с измерительными приборами. Исследование электрических цепей.»
- 2. «Интересные явления в природе. Занимательные опыты.»
- 3. «Исследование явления электромагнитной индукции. Из истории открытия явления электромагнитной индукции»
- 4. «Подготовка магических фокусов, основанных на физических закономерностях»
- 5. «Тестовые задания по физике. Составление тестов по физике. Работа с конструктором сайтов. Создание электронных тестов в помощь кабинету физики»
- 6. «Оптика. Занимательные опыты по физике. Оптические явления. Прямолинейное распространение света. Скорость света в вакууме. Законы отражения и преломления»
- 7. «Создание электронной презентации к уроку физики». Практическая работа
- 8. «Средства современной связи. Развитие средств связи»
- 9. «Строение солнечной системы. Карта звездного неба. Способы определения небесных координат. Вид звездного неба. Наблюдение за звездным небом». Экскурсия. Практикум
- 10. «Изготовление самодельных приборов и ремонт существующего оборудования кабинета физики»
- 11. Проектная работа «Изготовление действующей модели»

Второй год обучения

Лабораторные, практические и исследовательские работы

- 1. «Проверка правил моментов на рычаге».
- 2. «Проверочный эксперимент. Его роль и место в процессе познания. Необходимость физического эксперимента в науке. Мир физических явлений, представленных природой или вызванных физическим экспериментом. (На примере закона Ома)»
- 3. «Введение физических величин, характеризующих явление»
- 4. Пример наблюдений явление отражения света. Составить план проведения наблюдений (что наблюдать, от чего зависит и какая величина, как зависит и др.) Оборудование: микролаборатория "Оптика"

Составить план наблюдения, провести описание результатов наблюдений.

Пример наблюдений – явление электромагнитной индукции.

Оборудование: микролаборатория "Электродинамика".

Дома: повторить, что известно о магнитном и электрическом полях, об электрических зарядах, строении вещества.

- 5. «Гипотеза, роль и место гипотезы в процессе познания» Оборудование: микролаборатория "Электродинамика".
- 6. "Исследование зависимости средней скорости движения тела по наклонной плоскости от угла ее наклона".
 - Измерение промежутков времени метрономом, электронными часами/ Лабораторная работа "Определение средней квадратичной скорости молекул". Лабораторная работа "Наблюдение процесса роста кристаллов из раствора".
 - Лабораторный эксперимент с творческим заданием.
- 7. Лабораторная работа "Определение удельного сопротивления материала школьного реостат (без разматывания)".

Оборудование: микролаборатория "Механика", микролаборатория "Электродинамика", микролаборатория "Термодинамика".

8. Занимательные опыты по физике. Конкурс экспериментов.

Демонстрации опытов учителем, учащиеся объясняют полученный результат.

Предпроектная и проектная деятельность учащихся. Отработка последовательных этапов содержания проекта.

Оборудование: мультимедийный проектор, системный блок, экран.

- В ходе занятия учащиеся демонстрируют заранее подготовленные занимательные физические опыты. Оборудование к конкурсу определяется его участниками.
- 9. Предпроектная и проектная деятельность учащихся.
 - Оборудование: мультимедийный проектор, системный блок, экран. Обработка последовательных этапов содержания проекта.
- 10. Оборудование: для подготовки занятий используется книга "Обучение для будущего". Исследования по теме "Все о воде". Введение в тему "Все о воде".
- 11. Физика: Путь поисков и открытий. Исследования по теме "Физика вокруг нас". Научноисследовательская деятельность. Введение в тему «Физика вокруг нас».
- 12. Исследования по теме "Физика и техника". Введение в тему «Физика и техника".
- 13. «Методы технического творчества».
- 14. «Сделай и исследуй сам.»
- 15. Защита и обсуждение результатов проектных работ. "Физика в истории и жизни профессий"

Экспериментальные задания для первого года обучения

1 типа

<u> Цель задания</u>: проверка умения проводить косвенные измерения физических величин:

Предлагаемые работы:

- 1. плотности вещества,
- 2. силы Архимеда,
- 3. коэффициента трения скольжения,
- 4. жесткости пружины,
- 5. периода и частоты колебаний математического маятника,
- 6. момента силы, действующего на рычаг,
- 7. работы силы упругости при подъеме груза с помощью подвижного или неподвижного блока,
- 8. работы силы трения,
- 9. оптической силы собирающей линзы,
- 10. электрического сопротивления резистора,
- 11. работы электрического тока,
- 12. мощности электрического тока.

2 типа

<u> Цель задания</u>: проверка умения представлять экспериментальные результаты в виде таблиц или графиков и делать выводы на основании полученных экспериментальных данных.

Предлагаемые работы:

- 1. зависимости силы упругости, возникающей в пружине, от степени деформации пружины,
- 2. зависимости периода колебаний математического маятника от длины нити,
- 3. зависимости силы тока, возникающей в проводнике, от напряжения на концах проводника,

- 4. зависимость силы трения скольжения от силы нормального давления,
- 5. свойствах изображения, полученного с помощью собирающей линзы.

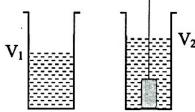
3 типа

<u>Цель задания</u>: проверка умения проводить экспериментальную проверку физических законов и следствий.

Предлагаемые работы:

- 1. Закона последовательного соединения резисторов для электрического напряжения
- 2. Закона параллельного соединения резисторов для силы электрического тока

1.Определение плотности вещества.


Используя рычажные весы с разновесом, мензурку, стакан с водой, цилиндр N = 2, соберите экспериментальную установку для измерения плотности материала, из которого изготовлен цилиндр N = 2.

В бланке ответов:

- 1) сделайте рисунок экспериментальной установки для определения объёма тела;
- 2) запишите формулу для расчёта плотности;
- 3) укажите результаты измерения массы цилиндра и его объёма;
- 4) запишите числовое значение плотности материала цилиндра.

Образец возможного решения

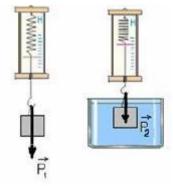
1) Схема экспериментальной установки

$$\rho = \frac{m}{V}$$

3)
$$m = 170 \text{ r}; V = V_2 - V_1 = 20 \text{ мл} = 20 \text{ см}^3$$

4)
$$\rho = 8.5 \frac{c}{cM^3} = 8500 \frac{\kappa c}{M^3}$$

2.Определение выталкивающей силы.


Используя динамометр, стакан с водой, цилиндр $N ext{0} ext{1}$, соберите экспериментальную установку для определения выталкивающей силы (силы Архимеда), действующей на цилиндр.

В бланке ответов:

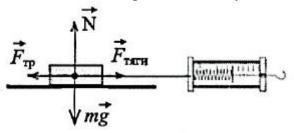
- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта выталкивающей силы;
- 3) укажите результаты измерений веса цилиндра в воздухе и веса цилиндра в воде;
- 4) запишите численное значение выталкивающей силы.

Образец возможного решения

1) Схема экспериментальной установки

- 2) $F_A = P_1 P_2$;
- 3) $P_1 = 1.7 \text{ H}; P_2 = 1.5 \text{ H};$
- 4) $F_A = 0.2 \text{ H}.$

3. Определение коэффициента трения скольжения


Используя каретку (брусок) с крючком, динамометр, один груз, направляющую рейку, соберите экспериментальную установку для измерения коэффициента трения скольжения между кареткой и поверхностью рейки.

В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта коэффициента трения скольжения;
- 3) укажите результаты измерений веса каретки с грузом и силы трения скольжения при движении каретки с грузом по поверхности рейки;
- 4) запишите числовое значение коэффициента трения скольжения.

Образец возможного решения

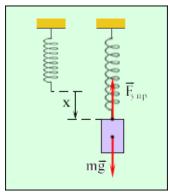
1) Схема экспериментальной установки

2)
$$F_{\text{тяги}} = F_{\text{тр}}$$
 (при равномерном движении);
$$F_{\text{тр}} = \mu N; \ N = P = \text{mg, отсюда} \quad F_{\text{тр}} = \mu P,$$

$$\mu = \frac{F_{\text{мяги}}}{P}$$

- 3) $F_{TMFM} = 0.4H; P = 2.0H$
- 4) $\mu = 0.2$.

4. Определение жесткости пружины


Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и два груза, соберите экспериментальную установку для измерения жёсткости пружины. Определите жёсткость пружины, подвесив к ней два груза. Для измерения веса грузов воспользуйтесь динамометром.

В бланке ответов:

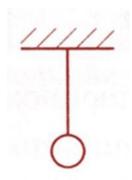
- 1) Сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта жёсткости пружины;
- 3) укажите результаты измерения веса грузов и удлинения пружины;
- 4) запишите числовое значение жёсткости пружины.

Образец возможного решения

1) Схема экспериментальной установки

4)
$$k = 40 \frac{H}{M}$$

5. Определение периода и частоты колебаний математического маятника

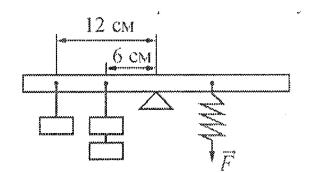

Для выполнения этого задания используйте лабораторное оборудование: штатив с муфтой и лапкой; метровую линейку (погрешность 5 мм); шарик с прикрепленной к нему нитью; часы с секундной стрелкой (или секундомер). Соберите экспериментальную установку для определения периода и частоты свободных колебаний нитяного маятника.

В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) Приведите формулу для расчета периода и частоты колебаний;
- 3) укажите результаты прямых измерений числа колебаний и времени колебаний для длин нити маятника равной 0,5 м;
- 4) вычислите период и частоту колебания;

Образец возможного решения

1) Схема экспериментальной установки



$$2) \quad T = \frac{t}{N}; \ \nu = \frac{1}{T}$$

1. Определение момента силы, действующего на рычаг

Используя рычаг, три груза, штатив и динамометр, соберите установку для исследования равновесия рычага. Три груза подвесьте слева от оси вращения рычага следующим образом: два груза на расстоянии 6 см и один груз на расстоянии 12 см от оси. Определите момент силы, которую необходимо приложить к правому концу рычага на расстоянии 12 см от оси вращения рычага для того, чтобы он оставался в равновесии в горизонтальном положении. В бланке ответов:

- 1) зарисуйте схему экспериментальной установки;
- 2) запишите формулу для расчета момента силы;
- 3) укажите результаты измерений приложенной силы и длины плеча;
- 4) запишите числовое значение момента силы.

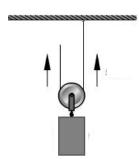
Образец возможного решения

1) Схема экспериментальной установки

2)
$$M = Fl$$

3)
$$F=2H$$
; $1=0,12M$

2. Определение работы силы упругости при подъеме груза с помощью подвижного или неподвижного блока


Используя штатив с муфтой, блок подвижный (неподвижный), нить, 3 груза, динамометр школьный, линейку, определите работу силы упругости при подъеме трех грузов на высоту 20 см.

В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) приведите формулу для расчета работу силы упругости;
- 3) укажите результаты прямых измерений высоты и силы упругости;
- 4) Вычислите работу силы упругости при подъеме трех грузов на указанную высоту

Образец возможного решения для подвижного блока

1) Схема экспериментальной установки

2)
$$A = F_{ynp.}h$$
;

- 3) $F_{yпр.} = 2 H$ (при равномерном перемещении); h = 0,2 м;
- 4) $A = 2 H \cdot 0,2 M = 0,4 Дж$

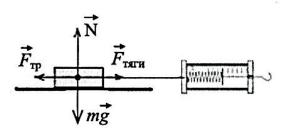
Образец возможного решения для неподвижного блока

1) Схема экспериментальной установки

2)
$$A = F_{v_{\Pi D}} h$$
;

- 3) $F_{\text{упр.}} = 3.2 \text{ H}$ (при равномерном перемещении); h = 0.2 M;
- 4) $A = 3.2 \text{ H} \cdot 0.2 \text{ м} = 0.64 \text{ Дж}$

3. Определение работы силы трения


Используя каретку (брусок) с крючком, динамометр, один груз, направляющую рейку, соберите экспериментальную установку для определения работы силы трения при перемещении в горизонтальном направлении каретки с грузом на длину рейки. В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта работы силы трения;
- 3) укажите результаты измерений силы трения скольжения при движении каретки с грузом по поверхности рейки, длины рейки;

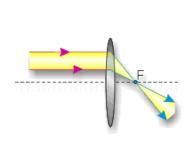
4) запишите числовое значение работы силы трения.

Образец возможного решения

1) Схема экспериментальной установки

- 2) $A=F_{Tp} \cdot s; F_{Tp}=F_{ТЯГИ}$ (при равномерном движении);
- 3) $F_{TSITH} = 0.4 \text{ H}; 1 = 0.5 \text{ M};$
- 4) $A = 0.4 \text{ H} \cdot 0.5 \text{ м} = 2 \text{ Дж}.$

4. Определение оптической силы собирающей линзы


Используя собирающую линзу, экран, линейку, соберите экспериментальную установку для определения оптической силы линзы. В качестве источника света используйте свет от удалённого окна.

В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите формулу для расчёта оптической силы линзы;
- 3) укажите результат измерения фокусного расстояния линзы;
- 4) запишите значение оптической силы линзы.

Образец возможного решения

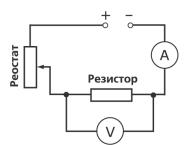
1) Схема экспериментальной установки

$$_{2)} D = \frac{1}{F}$$

3) получить на экране изображение удаленного окна; измерить расстояние от экрана до линзы, оно примерно равно фокусному F = 6 см = 0.06 м

$$_{4)} D = \frac{1}{0.06M} \approx 17\partial nmp$$

5. Определение электрического сопротивления резистора


Определите электрическое сопротивление резистора R_1 . Для этого соберите экспериментальную установку, используя источник тока 4,5 B, вольтметр, амперметр, ключ, реостат, соединительные провода и резистор, обозначенный R_1 . При помощи реостата установите в цепи силу тока 0,2 A.

В бланке ответов:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта электрического сопротивления;
- 3) укажите результаты измерения напряжения при силе тока 0,2 А;
- 4) запишите численное значение электрического сопротивления.

Образец возможного решения

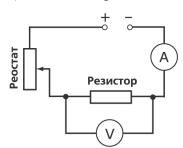
1)Схема экспериментальной установки

$$2) R = \frac{U}{I}$$

3)
$$I = 0.2 A$$
; $U = 2.4 B$

4)
$$R = \frac{2.4B}{0.2A} = 12OM$$

б. Определение мощности тока


Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_2 , соберите экспериментальную установку для определения мощности, выделяемой на резисторе при силе тока 0,5 A.

В бланке ответов:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта мощности электрического тока;
- 3) укажите результаты измерения напряжения при силе тока 0,5 А;
- 4) запишите численное значение мощности электрического тока.

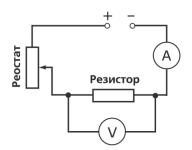
Образец возможного решения

1)Схема экспериментальной установки

2)
$$P = UI$$

3) $I = 0.5 \text{ A}$; $U = 3.0 \text{ B}$
4) $P = 3.0B \cdot 0.5A = 1.5 Bm$

7. Определение работы тока


Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный \mathbf{R} , соберите экспериментальную установку для определения работы электрического тока на резисторе. При помощи реостата установите в цепи силу тока $0.3\,\mathrm{A}$. Определите работу электрического тока за $10\,\mathrm{Muhym}$.

В бланке ответов:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта работы электрического тока;
- 3) укажите результаты измерения напряжения при силе тока 0,3 А;
- 4) запишите численное значение работы электрического тока.

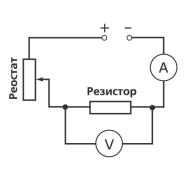
Образец возможного решения

1)Схема экспериментальной установки

2)
$$A = UIt$$

3) $I = 0.3$ A; $U = 3.6$ B; $t = 10$ мин.=600с
4) $A = 3.6B \cdot 0.3A \cdot 600c = 648$ Дж

13. Определение зависимости силы тока, возникающей в проводнике, от напряжения на концах проводника


Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_2 , соберите экспериментальную установку для исследования зависимости силы тока, возникающей в проводнике, от напряжения на концах проводника.

В бланке ответов:

- 1) нарисуйте электрическую схему эксперимента;
- 2) укажите результаты измерения напряжения при силе тока при разных положениях ползунка реостата;
- 3) Сделайте вывод о зависимости силы тока, возникающей в проводнике, от напряжения на концах проводника

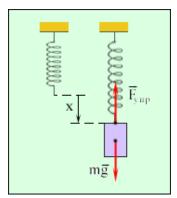
Образец возможного решения

1)Схема экспериментальной установки

2% опыта	I, A	U, B
1	0,2	2,4
2	0,3	3,6
3	0,4	4,8

3) Вывод: при увеличении напряжения между концами проводника сила тока в проводнике также увеличивается.

14. Определение зависимости силы упругости, возникающей в пружине, от степени деформации пружины


Для выполнения этого задания используйте лабораторное оборудование: штатив с муфтой и лапкой, пружину, динамометр, линейку и набор из трех грузов. Установите зависимость силы упругости, возникающей в пружине, от величины растяжения пружины. Определите растяжение пружины, подвешивая к ней поочередно один, два и три груза. Для определения веса грузов воспользуйтесь динамометром.

В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите результаты измерения веса грузов, удлинения пружины;
- 3)сформулируйте вывод о зависимости силы упругости, возникающей в пружине, от величины растяжения пружины

Образец возможного решения

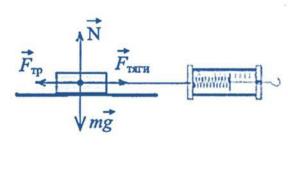
1)Схема экспериментальной установки

№ опыта	Вес груза, Н	Сила упругости, Н	Удлинение, м
1	1	1	0,025
2	2	2	0,050
3	3	3	0,075

3) Вывод: Сила упругости прямо пропорциональна растяжению пружины

15. Определение зависимости силы трения скольжения от силы нормального давления

2)


Используя каретку (брусок) с крючком, динамометр, три груза, направляющую рейку, соберите экспериментальную установку для определения зависимости силы трения скольжения от силы нормального давления

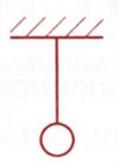
В бланке ответов:

- 1) нарисуйте схему эксперимента
- 2) укажите результаты измерения
- 3) сформулируйте вывод о зависимости силы трения скольжения от силы нормального давления

Образец возможного решения

1)Схема экспериментальной установки

2) $F_{\text{тр}} = F_{\text{тяг}}$ при равномерном движении, $F_{\text{нор.давл.}} = F_{\text{тяж}}$


№ опыта	Сила нормального давления, Н	Сила трения, Н
1	2	0,4
2	3	0,8
3	4	1,2

3)Вывод: сила трения скольжения прямо пропорциональна силе нормального давления.

16. Определение зависимости периода колебаний математического маятника от длины нити

Для выполнения этого задания используйте лабораторное оборудование: штатив с муфтой и лапкой; метровую линейку (погрешность 5 мм); шарик с прикрепленной к нему нитью; часы с секундной стрелкой (или секундомер). Соберите экспериментальную установку для исследования зависимости периода свободных колебаний нитяного маятника от длины нити. В бланке ответов:

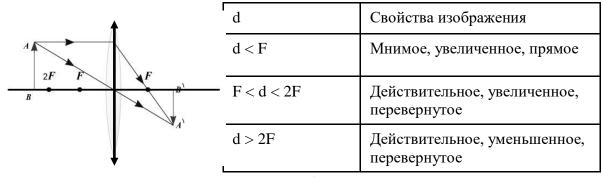
- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результаты прямых измерений числа колебаний и времени колебаний для трех длин нити маятника в виде таблицы;
- 3) вычислите период колебаний для всех трех случаев;
- 4) сформулируйте вывод о зависимости периода свободных колебаний нитяного маятника от длины нити.
 - Образец возможного решения
- 1)Схема экспериментальной установки

2) - 3)

№	Длина нити <i>L</i> , м	Число колебаний п	Время колебаний t, c	Период колебаний $T = t/n$, с
1	1	30	60	2
2	0,5	30	42	1,4
3	0,25	30	30	1

4)Вывод: При уменьшении длины нити период свободных колебаний уменьшается.

17. Определение свойств изображения, полученного с помощью собирающей линзы Используя собирающую линзу, экран, линейку, рабочее поле, источник питания постоянного тока 4,5 В, соединительные провода, ключ, лампу на подставке соберите экспериментальную


установку для определения свойств изображений, полученного с помощью собирающей линзы

В бланке ответов:

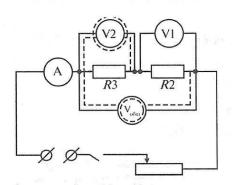
- 1) сделайте рисунок экспериментальной установки;
- 2) укажите результат измерения фокусного расстояния линзы;
- 3) сделайте вывод, ка изменяются свойства изображений, полученных с помощью собирающей линзы при удалении предмета от линзы.

Образец возможного решения

1)Схема экспериментальной установки

3)Вывод: При удалении предмета от линзы изображение предмета из мнимого переходит в действительное, а его размеры уменьшаются.

18. Проверка законов последовательного соединения резисторов для электрического напряжения


Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резисторы, обозначенные R_1 и R_2 соберите экспериментальную установку для проверки правила для электрического напряжения при последовательном соединении резисторов.

В бланке ответов:

- 1. начертите электрическую схему эксперимента;
- 2. измерьте напряжение на каждом резисторе и общее напряжение на участке, включающим оба резистора;
- 3. сравните напряжение на каждом резисторе и общее напряжение на участке, включающим оба резистора
- 4. сделайте вывод о справедливости или ошибочности проверяемого правила.

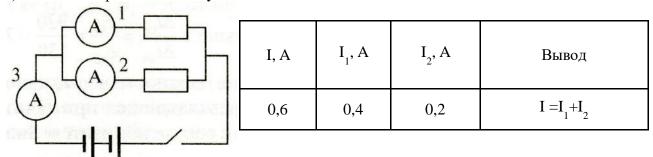
Образец возможного решения

1) Схема экспериментальной установки

U, B	U ₁ , B	U ₂ , B	Вывод
3	2	1	$U = U_1 + U_2$

Вывод: Общее напряжение на двух последовательно соединенных резисторах равно сумме напряжений на каждом из резисторов.

19. Проверка законов параллельного соединения резисторов для силы тока


Используя источник тока $(4,5\ B)$, вольтметр, амперметр, ключ, реостат, соединительные провода, резисторы, обозначенные R_1 и R_2 соберите экспериментальную установку для проверки правила для силы тока при параллельном соединении резисторов.

В бланке ответов:

- 1. начертите электрическую схему эксперимента;
- 2. измерьте силу тока в каждой ветви цепи и на неразветвленном участке;
- 3. сравните силу тока на основном проводнике с суммой сил токов в параллельно соединенных проводниках,
- 4. сделайте вывод о справедливости или ошибочности проверяемого правила.

Образец возможного решения

1) Схема экспериментальной установки

Вывод: Сила тока на основном проводнике равна сумме сил токов в параллельно соединенных проводниках.

Практикум для первого года обучения

1.Используя рычажные весы с разновесом, мензурку, стакан с водой, цилиндр № 2, соберите экспериментальную установку для измерения плотности материала, из которого изготовлен цилиндр № 2.

В бланке ответов:

- 5) сделайте рисунок экспериментальной установки для определения объёма тела;
- 6) запишите формулу для расчёта плотности;
- 7) укажите результаты измерения массы цилиндра и его объёма;
- 8) запишите числовое значение плотности материала цилиндра.
 - 2.Используя динамометр, стакан с водой, цилиндр № 1, соберите экспериментальную установку для определения выталкивающей силы (силы Архимеда), действующей на цилиндр.

В бланке ответов:

- 5) сделайте рисунок экспериментальной установки;
- 6) запишите формулу для расчёта выталкивающей силы;
- 7) укажите результаты измерений веса цилиндра в воздухе и веса цилиндра в воде;
- 8) запишите численное значение выталкивающей силы.
 - 3.Используя каретку (брусок) с крючком, динамометр, один груз, направляющую рейку, соберите экспериментальную установку для измерения коэффициента трения скольжения между кареткой и поверхностью рейки.

В бланке ответов:

- 5) сделайте рисунок экспериментальной установки;
- 6) запишите формулу для расчёта коэффициента трения скольжения;
- 7) укажите результаты измерений веса каретки с грузом и силы трения скольжения при движении каретки с грузом по поверхности рейки;
- 8) запишите числовое значение коэффициента трения скольжения.
 - 8. Используя каретку (брусок) с крючком, динамометр, один груз, направляющую рейку, соберите экспериментальную установку для определения работы силы трения при перемещении в горизонтальном направлении каретки с грузом на длину рейки.

В бланке ответов:

5) сделайте рисунок экспериментальной установки;

- 6) запишите формулу для расчёта работы силы трения;
- 7) укажите результаты измерений силы трения скольжения при движении каретки с грузом по поверхности рейки, длины рейки;
- 8) запишите числовое значение работы силы трения.
 - 15. Используя каретку (брусок) с крючком, динамометр, три груза, направляющую рейку, соберите экспериментальную установку для определения зависимости силы трения скольжения от силы нормального давления

В бланке ответов:

- 4) нарисуйте схему эксперимента
- 5) укажите результаты измерения
- 6) сформулируйте вывод о зависимости силы трения скольжения от силы нормального давления
 - 4. Используя штатив с муфтой и лапкой, пружину, динамометр, линейку и два груза, соберите экспериментальную установку для измерения жёсткости пружины. Определите жёсткость пружины, подвесив к ней два груза. Для измерения веса грузов воспользуйтесь динамометром.

В бланке ответов:

- 5) Сделайте рисунок экспериментальной установки;
- 6) запишите формулу для расчёта жёсткости пружины;
- 7) укажите результаты измерения веса грузов и удлинения пружины;
- 8) запишите числовое значение жёсткости пружины.
 - 14. Для выполнения этого задания используйте лабораторное оборудование: штатив с муфтой и лапкой, пружину, динамометр, линейку и набор из трех грузов. Установите зависимость силы упругости, возникающей в пружине, от величины растяжения пружины. Определите растяжение пружины, подвешивая к ней поочередно один, два и три груза. Для определения веса грузов воспользуйтесь динамометром.

В бланке ответов:

- 1) сделайте рисунок экспериментальной установки;
- 2) запишите результаты измерения веса грузов, удлинения пружины;
- 3)сформулируйте вывод о зависимости силы упругости, возникающей в пружине, от величины растяжения пружины
- 5.Для выполнения этого задания используйте лабораторное оборудование: штатив с муфтой и лапкой; метровую линейку (погрешность 5 мм); шарик с прикрепленной к нему нитью; часы с секундной стрелкой (или секундомер). Соберите экспериментальную установку для определения периода и частоты свободных колебаний нитяного маятника.

В бланке ответов:

- 5) сделайте рисунок экспериментальной установки;
- 6) Приведите формулу для расчета периода и частоты колебаний;
- 7) укажите результаты прямых измерений числа колебаний и времени колебаний для длин нити маятника равной 0,5 м;
- 8) вычислите период и частоту колебания;
 - 16. Для выполнения этого задания используйте лабораторное оборудование: штатив с муфтой и лапкой; метровую линейку (погрешность 5 мм); шарик с прикрепленной к нему нитью; часы с секундной стрелкой (или секундомер). Соберите экспериментальную установку для исследования зависимости периода свободных колебаний нитяного маятника от длины нити.

В бланке ответов:

- 5) сделайте рисунок экспериментальной установки;
- 6) укажите результаты прямых измерений числа колебаний и времени колебаний для трех длин нити маятника в виде таблицы;
- 7) вычислите период колебаний для всех трех случаев;
- 8) сформулируйте вывод о зависимости периода свободных колебаний нитяного маятника от длины нити.
- 6. Определение момента силы, действующего на рычаг

Используя рычаг, три груза, штатив и динамометр, соберите установку для исследования равновесия рычага. Три груза подвесьте слева от оси вращения рычага следующим образом: два груза на расстоянии 6 см и один груз на расстоянии 12 см от оси. Определите момент силы, которую необходимо приложить к правому концу рычага на расстоянии 12 см от оси вращения рычага для того, чтобы он оставался в равновесии в горизонтальном положении. В бланке ответов:

- 5) зарисуйте схему экспериментальной установки;
- 6) запишите формулу для расчета момента силы;
- 7) укажите результаты измерений приложенной силы и длины плеча;
- 8) запишите числовое значение момента силы.
 - 7.Используя штатив с муфтой, блок подвижный (неподвижный), нить, 3 груза, динамометр школьный, линейку, определите работу силы упругости при подъеме трех грузов на высоту 20 см.

В бланке ответов:

- 5) сделайте рисунок экспериментальной установки;
- 6) приведите формулу для расчета работу силы упругости;
- 7) укажите результаты прямых измерений высоты и силы упругости;
 - вычислите работу силы упругости при подъеме трех грузов на указанную высоту 9. Используя собирающую линзу, экран, линейку, соберите экспериментальную установку для определения оптической силы линзы. В качестве источника света используйте свет от удалённого окна.

В бланке ответов:

- 5) сделайте рисунок экспериментальной установки;
- 6) запишите формулу для расчёта оптической силы линзы;
- 7) укажите результат измерения фокусного расстояния линзы;
- 8) запишите значение оптической силы линзы.
 - 17. Используя собирающую линзу, экран, линейку, рабочее поле, источник питания постоянного тока 4,5 В, соединительные провода, ключ, лампу на подставке соберите экспериментальную установку для определения свойств изображений, полученного с помощью собирающей линзы

В бланке ответов:

- 4) сделайте рисунок экспериментальной установки;
- 5) укажите результат измерения фокусного расстояния линзы;
- 6) сделайте вывод, ка изменяются свойства изображений, полученных с помощью собирающей линзы при удалении предмета от линзы.
 - 10.Определите электрическое сопротивление резистора R_1 . Для этого соберите экспериментальную установку, используя источник тока 4,5 B, вольтметр, амперметр, ключ, реостат, соединительные провода и резистор, обозначенный R_1 . При помощи реостата установите в цепи силу тока 0,2 A.

В бланке ответов:

- 5) нарисуйте электрическую схему эксперимента;
- 6) запишите формулу для расчёта электрического сопротивления;
- 7) укажите результаты измерения напряжения при силе тока 0,2 А;
- 8) запишите численное значение электрического сопротивления.
 - 11. Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_2 , соберите экспериментальную установку для определения мощности, выделяемой на резисторе при силе тока 0,5 A.

В бланке ответов:

- 5) нарисуйте электрическую схему эксперимента;
- 6) запишите формулу для расчёта мощности электрического тока;
- 7) укажите результаты измерения напряжения при силе тока 0,5 А;
- 8) запишите численное значение мощности электрического тока.
 - 12.Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R, соберите экспериментальную установку для определения работы

электрического тока на резисторе. При помощи реостата установите в цепи силу тока 0,3 А. Определите работу электрического тока за 10 минут.

В бланке ответов:

- 5) нарисуйте электрическую схему эксперимента;
- 6) запишите формулу для расчёта работы электрического тока;
- 7) укажите результаты измерения напряжения при силе тока 0,3 А;
- 8) запишите численное значение работы электрического тока.
 - 13. Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резистор, обозначенный R_2 , соберите экспериментальную установку для исследования зависимости силы тока, возникающей в проводнике, от напряжения на концах проводника.

В бланке ответов:

- 4) нарисуйте электрическую схему эксперимента;
- укажите результаты измерения напряжения при силе тока при разных положениях ползунка реостата;
- 6) Сделайте вывод о зависимости силы тока, возникающей в проводнике, от напряжения на концах проводника
 - 18. Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резисторы, обозначенные R_1 и R_2 соберите экспериментальную установку для проверки правила для электрического напряжения при последовательном соединении резисторов.

В бланке ответов:

- 1. начертите электрическую схему эксперимента;
- 2. измерьте напряжение на каждом резисторе и общее напряжение на участке, включающим оба резистора;
- 3. сравните напряжение на каждом резисторе и общее напряжение на участке, включающим оба резистора
- 4. сделайте вывод о справедливости или ошибочности проверяемого правила.
- 19. Проверка законов параллельного соединения резисторов для силы тока Используя источник тока (4,5 B), вольтметр, амперметр, ключ, реостат, соединительные провода, резисторы, обозначенные R_1 и R_2 соберите экспериментальную установку для проверки правила для силы тока при параллельном соединении резисторов.

В бланке ответов:

- 1. начертите электрическую схему эксперимента;
- 2. измерьте силу тока в каждой ветви цепи и на неразветвленном участке;
- 3. сравните силу тока на основном проводнике с суммой сил токов в параллельно соединенных проводниках,
- 4. сделайте вывод о справедливости или ошибочности проверяемого правила.